
Day 3

Strings



Objectives

Students should be able to:

• Concatenate strings.

• Index strings.
• Slice Strings.

• Convert strings into other types.
• Formatting other types into strings.



Strings

• As we have seen previously, we can assign strings into variables, print them out, and 
convert them into integers or floats using the int and float functions.

• There are also many other things we can do with strings.
• Such as get a particular character (or slice of characters) from a string.

• Or concatenate (combine) several strings together.
• We can also convert other types into strings so that we can display more aesthetic 

messages.



String Indexing



String Indexing

• A string is simply a sequence of characters.

• For example, the string ‘Hi 12’ is made up of 5 characters: the letters ‘H’ and ‘i’, a space, 
and the digits ‘1’ and ‘2’.

• We can extract a particular character from a string once we know its position in the string.

• This is done using indexing.



Example
Explanation

• We have a variable called my_name assigned to the 
string ‘John Doe’.
• We then print out my_name[3], only a single character 

gets printed out. Specifically, the letter ‘n’.
• The square brackets is called the indexing operator.
• It is used to extract a character from a string.
• The integer inside the brackets specifies which character 

to extract. The 3 inside the brackets means that we want 
to extract the 4th character, which is the ‘n’.
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Example
Explanation continued

• You might ask why use the number 3 to get the 4th

character.
• This is because the index numbering start at 0. So, the 

‘J’ is at index 0, the ‘o’ is at index 1, and so on.
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Example 2
Explanation

• This example shows that ‘J’ is at index 0, ‘o’ is at index 
1, ‘h’ at index 2.
• It also shows that the space is at index 4, proving that 

spaces are counted as part of the string.
• It also shows that the last character, the letter ‘e’ is at 

index 7, despite there being 8 characters in the string. 
This is, of course, because the indices start at 0.
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Example 3
Explanation

• These examples show more diverse ways of using 
indexing.
• In lines 2 and 3, we set x to the character at index 0, 

which is the ‘H’, so when x is printed out the letter ‘H’ 
is displayed.
• On line 4, we extract the digit ‘1’ from the string. We 

then convert it into an integer and assign it to the 
variable y. Similarly, the variable z gets assigned to the 
integer 2 after extracting the digit from the string.
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Example 3
Explanation Continued

• We then print out the sum of y and z, which are 1 and 
2 respectively, so 3 is displayed.
• We can also index a string directly. So, on line 7, the 

character at index 4 from the string ‘Hello’, which is 
the letter ‘o’, is extracted, and hence printed out.
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Example 4
Explanation

• From this example, we see that we don’t have to put 
an exact number as the index.
• We can put a variable instead.
• Or any calculation or expression which gives an 

integer as the answer.
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Example 5 – Negative Indices
Explanation

• Python also allows you to use negative indices to get 
characters starting from the end of a string.
• Notice that using an index of -1 always extracts the 

last character of the string.
• This does not work in most other programming 

languages, however.
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Example 6 – Negative Indices
Explanation

• Python also allows you to use negative indices to get 
characters starting from the end of a string.
• The indices -1, -2, and -3 correspond to the last, 

second to last, and third to last characters 
respectively, which are ‘!’, ‘s’, and ‘n’.
• This pattern continues until the first character, which 

in this case has an index of -16.
• This does not work in most other programming 

languages, however.
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Index Errors

• Trying to use an index on a string which does not have enough characters to get to that 
index will cause the program to give an error.

• Using non-integers as indices also gives an error.



String Slicing



String Slicing

• String slicing is very similar to string indexing.

• But instead of extracting a single character from a string, it extracts a smaller string from 
the original string.



Example 1
Explanation

• Using two integers in the brackets separated by a 
colon allows you to extract a smaller string using a 
range of characters from the original string.
• Here we see that the slice [3:7] extracted the string 

“grat” from the original string “Congratulations!”.
• The 3 represents the index to start extracting at (‘g’ is 

at index 3)
• The 7 represents the index to stop extracting at.
• Notice that the character at index 7 (the ‘u’) is not 

included, That is because extracting a slice does not 
include the stopping index, it stops at the one before 
that.
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Example 1
Explanation

• If the stopping index is left out, like on line 3, then the 
extraction will include the entire remainder of the 
string.
• If the starting index is left out, like on line 4, then the 

extraction will start from the first character.
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Example 2 – Step Sizes
Explanation

• If a third integer is included in the brackets after a 
second colon, then that integer is the step size.
• If the step size is 2 (like on lines 2 and 4), then every 

other character is extracted.
• If the step size is 3 (like on line 3), then every third 

character is extracted.
• Etc.
• Again, the starting and stopping indices can be left 

out like on lines 4 and 3 respectively.
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String Concatenation



String Concatenation

• String concatenation refers to joining several string together.

• In python this is done using the addition symbol.



Example 1

Source Code Output



Example 1
Explanation

• We ask the user to enter their first name and last name.
• In line 3 we then concatenate the string “Hello” with their first name and last 

name and print out the combined string.
• Notice, however, that it prints out all the strings stuck together.
• We can fix this by placing a space in the first string and adding a string with a 

space between the first and last name. This is done on line 4.
• In this example, we could have gotten the same result by using commas in the 

print function as in line 5.



Example 2 – Caution
Source Code Output

Explanation
• Because the inputs were not converted into integers (or floats), when we tried to 

add them, they were still treated as string, and therefore were concatenated 
instead.



Example 3 – Incrementing
Explanation

• Similarly, to how a numeric variable can be increased 
by adding a value to it and assigning it back into a 
variable,
• The equivalent can be done to strings.
• In this example, x starts off with the string “Hello”, 

and more strings are added to it until it contains the 
entire “Hello World!” string, which is then printed 
out.
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String Formatting



String Formatting

• String formatting involves placing data (such as numbers) into a string

• This is normally done to display the data in a nice way for the user.

• There are many ways to format strings in Python.
• Four of these ways are shown in the following example.



Example 1 – Code



Example 1 – Output



Example 1 – Explanation of Method 1

• We first ask the user to enter their name, age and height.
• The age is converted into an integer and the height is converted into a float.
• The first method, on line 4, uses placeholders.
• The ‘%s’, ‘%d’, and ‘%f’ are known as placeholder.
• These placeholders will eventually be replaced with actual data.
• ‘%s’ is used as a placeholder for a string, ‘%d’ for an integer, and ‘%f’ for a float.
• Which is why they are used for the name, age, and height, respectively.
• To replace the placeholders, we type the % sign after the string and, in 

parentheses, list out the variables we want to replace the placeholders with.



Example 1 – Explanation of Method 2

• The second method, on line 5, uses string concatenation, and the str function.
• The str function is used to convert integers, floats and other data into a string.
• By using the str function on the name and the height, we can then concatenate 

all the pieces of data into a single string.



Example 1 – Explanation of Method 3 and 4

• The third method, on line 6, uses placeholders and the .format method.
• For this method, the placeholders are curly brackets.
• To replace the placeholders, we type .format() after the string and list out the 

variables we want to replace the placeholders with, in the parentheses of the 
format function.
• In the last method, on line 7, we do something very similar to method 3, but we 

place an f before the quotation mark, and we don’t use the format function.
• We also put the variable name in the curly brackets in the string instead of 

outside the string.



Formatting Floats

• Normally, when a float is printed out, many decimal places are displayed.
• We usually only want to print a few decimal places.
• This can be specified when printing out floats using formatting.



Example 2 – Code



Example 2 – Output



Example 2 – Explanation

• This example shows how to specify the number of decimal places to print a float 
for each of the four formatting methods. In each case the number of decimal 
places was specified as 2.
• For the first method, the placeholder used was “%.2f” instead of “%f”. For the 

third and fourth methods, the specifier “:.2f” was added inside the curly brackets.
• For the second method, the round function was used. By placing the number 2 

into the round function, the float is rounded to 2 decimal places. 
• For each of these, the 2 can be changed to whatever number of decimal places 

you want.


