
Day 3

Strings



Objectives

Students should be able to:

• Concatenate strings.

• Index strings.
• Slice Strings.

• Convert strings into other types.
• Formatting other types into strings.



Strings

• As we have seen previously, we can assign strings into variables, print them out, and 
convert them into integers or floats using the int and float functions.

• There are also many other things we can do with strings.
• Such as get a particular character (or slice of characters) from a string.

• Or concatenate (combine) several strings together.
• We can also convert other types into strings so that we can display more aesthetic 

messages.



String Indexing



String Indexing

• A string is simply a sequence of characters.

• For example, the string ‘Hi 12’ is made up of 5 characters: the letters ‘H’ and ‘i’, a space, 
and the digits ‘1’ and ‘2’.

• We can extract a particular character from a string once we know its position in the string.

• This is done using indexing.



Example
Explanation

• We have a variable called my_name assigned to the 
string ‘John Doe’.
• We then print out my_name[3], only a single character 

gets printed out. Specifically, the letter ‘n’.
• The square brackets is called the indexing operator.
• It is used to extract a character from a string.
• The integer inside the brackets specifies which character 

to extract. The 3 inside the brackets means that we want 
to extract the 4th character, which is the ‘n’.

Source Code

Output



Example
Explanation continued

• You might ask why use the number 3 to get the 4th

character.
• This is because the index numbering start at 0. So, the 

‘J’ is at index 0, the ‘o’ is at index 1, and so on.

Source Code

Output



Example 2
Explanation

• This example shows that ‘J’ is at index 0, ‘o’ is at index 
1, ‘h’ at index 2.
• It also shows that the space is at index 4, proving that 

spaces are counted as part of the string.
• It also shows that the last character, the letter ‘e’ is at 

index 7, despite there being 8 characters in the string. 
This is, of course, because the indices start at 0.

Source Code

Output



Example 3
Explanation

• These examples show more diverse ways of using 
indexing.
• In lines 2 and 3, we set x to the character at index 0, 

which is the ‘H’, so when x is printed out the letter ‘H’ 
is displayed.
• On line 4, we extract the digit ‘1’ from the string. We 

then convert it into an integer and assign it to the 
variable y. Similarly, the variable z gets assigned to the 
integer 2 after extracting the digit from the string.

Source Code

Output



Example 3
Explanation Continued

• We then print out the sum of y and z, which are 1 and 
2 respectively, so 3 is displayed.
• We can also index a string directly. So, on line 7, the 

character at index 4 from the string ‘Hello’, which is 
the letter ‘o’, is extracted, and hence printed out.

Source Code

Output



Example 4
Explanation

• From this example, we see that we don’t have to put 
an exact number as the index.
• We can put a variable instead.
• Or any calculation or expression which gives an 

integer as the answer.

Source Code

Output



Example 5 – Negative Indices
Explanation

• Python also allows you to use negative indices to get 
characters starting from the end of a string.
• Notice that using an index of -1 always extracts the 

last character of the string.
• This does not work in most other programming 

languages, however.

Source Code

Output



Example 6 – Negative Indices
Explanation

• Python also allows you to use negative indices to get 
characters starting from the end of a string.
• The indices -1, -2, and -3 correspond to the last, 

second to last, and third to last characters 
respectively, which are ‘!’, ‘s’, and ‘n’.
• This pattern continues until the first character, which 

in this case has an index of -16.
• This does not work in most other programming 

languages, however.

Source Code

Output



Index Errors

• Trying to use an index on a string which does not have enough characters to get to that 
index will cause the program to give an error.

• Using non-integers as indices also gives an error.



String Slicing



String Slicing

• String slicing is very similar to string indexing.

• But instead of extracting a single character from a string, it extracts a smaller string from 
the original string.



Example 1
Explanation

• Using two integers in the brackets separated by a 
colon allows you to extract a smaller string using a 
range of characters from the original string.
• Here we see that the slice [3:7] extracted the string 

“grat” from the original string “Congratulations!”.
• The 3 represents the index to start extracting at (‘g’ is 

at index 3)
• The 7 represents the index to stop extracting at.
• Notice that the character at index 7 (the ‘u’) is not 

included, That is because extracting a slice does not 
include the stopping index, it stops at the one before 
that.

Source Code

Output



Example 1
Explanation

• If the stopping index is left out, like on line 3, then the 
extraction will include the entire remainder of the 
string.
• If the starting index is left out, like on line 4, then the 

extraction will start from the first character.

Source Code

Output



Example 2 – Step Sizes
Explanation

• If a third integer is included in the brackets after a 
second colon, then that integer is the step size.
• If the step size is 2 (like on lines 2 and 4), then every 

other character is extracted.
• If the step size is 3 (like on line 3), then every third 

character is extracted.
• Etc.
• Again, the starting and stopping indices can be left 

out like on lines 4 and 3 respectively.

Source Code

Output



String Concatenation



String Concatenation

• String concatenation refers to joining several string together.

• In python this is done using the addition symbol.



Example 1

Source Code Output



Example 1
Explanation

• We ask the user to enter their first name and last name.
• In line 3 we then concatenate the string “Hello” with their first name and last 

name and print out the combined string.
• Notice, however, that it prints out all the strings stuck together.
• We can fix this by placing a space in the first string and adding a string with a 

space between the first and last name. This is done on line 4.
• In this example, we could have gotten the same result by using commas in the 

print function as in line 5.



Example 2 – Caution
Source Code Output

Explanation
• Because the inputs were not converted into integers (or floats), when we tried to 

add them, they were still treated as string, and therefore were concatenated 
instead.



Example 3 – Incrementing
Explanation

• Similarly, to how a numeric variable can be increased 
by adding a value to it and assigning it back into a 
variable,
• The equivalent can be done to strings.
• In this example, x starts off with the string “Hello”, 

and more strings are added to it until it contains the 
entire “Hello World!” string, which is then printed 
out.

Source Code

Output



String Formatting



String Formatting

• String formatting involves placing data (such as numbers) into a string

• This is normally done to display the data in a nice way for the user.

• There are many ways to format strings in Python.
• Four of these ways are shown in the following example.



Example 1 – Code



Example 1 – Output



Example 1 – Explanation of Method 1

• We first ask the user to enter their name, age and height.
• The age is converted into an integer and the height is converted into a float.
• The first method, on line 4, uses placeholders.
• The ‘%s’, ‘%d’, and ‘%f’ are known as placeholder.
• These placeholders will eventually be replaced with actual data.
• ‘%s’ is used as a placeholder for a string, ‘%d’ for an integer, and ‘%f’ for a float.
• Which is why they are used for the name, age, and height, respectively.
• To replace the placeholders, we type the % sign after the string and, in 

parentheses, list out the variables we want to replace the placeholders with.



Example 1 – Explanation of Method 2

• The second method, on line 5, uses string concatenation, and the str function.
• The str function is used to convert integers, floats and other data into a string.
• By using the str function on the name and the height, we can then concatenate 

all the pieces of data into a single string.



Example 1 – Explanation of Method 3 and 4

• The third method, on line 6, uses placeholders and the .format method.
• For this method, the placeholders are curly brackets.
• To replace the placeholders, we type .format() after the string and list out the 

variables we want to replace the placeholders with, in the parentheses of the 
format function.
• In the last method, on line 7, we do something very similar to method 3, but we 

place an f before the quotation mark, and we don’t use the format function.
• We also put the variable name in the curly brackets in the string instead of 

outside the string.



Formatting Floats

• Normally, when a float is printed out, many decimal places are displayed.
• We usually only want to print a few decimal places.
• This can be specified when printing out floats using formatting.



Example 2 – Code



Example 2 – Output



Example 2 – Explanation

• This example shows how to specify the number of decimal places to print a float 
for each of the four formatting methods. In each case the number of decimal 
places was specified as 2.
• For the first method, the placeholder used was “%.2f” instead of “%f”. For the 

third and fourth methods, the specifier “:.2f” was added inside the curly brackets.
• For the second method, the round function was used. By placing the number 2 

into the round function, the float is rounded to 2 decimal places. 
• For each of these, the 2 can be changed to whatever number of decimal places 

you want.


