
Day 4

Lists – For Loops



Objectives

Students should be able to:

• Understand and create nested loops.

• Create and use lists and list operations.
• Use for-each loops.



Nested Loops



Nested Loops

• Nested loops are when you have a loop inside of another loop.

• This is best demonstrated with an example.



Example 1 – Times Table
Source Code Sample of Output



Example 1 – Times Table Explanation

• The output shown above is just a sample of the full output.
• The full output will contain all the multiplication answers from 1x1=1 up to 

10x10=100.
• The program starts off with a variable “a” which is set to 1 and a while loop which 

checks if “a” is less than or equal to 10.
• Inside that while loop the variable “b” is set to 1 and another while loop checks if 

“b” is less than or equal to 10.
• Inside of this second while loop, we display the answer of multiplying “a” by “b” 

(which is 1x1=1), then we increase “b” by 1.
• The inside while loop then repeats, this time showing (1x2=2).



Example 1 – Times Table Explanation 
Continued.
• The inside while loop keeps repeating until “b” gets to 10, the calculation 

1x10=10 is displayed and “b” increases to 11, ending the inside while loop.
• Since the inside while loop is finished, we reach line 7 of the code where variable 

“a” is increased from 1 to 2.
• The outside while loop then repeats, setting “b” back to 1.
• The inside while loop causes the calculations 2x1=2, 2x2=4, etc., to be displayed 

up to 2x10=20.
• This pattern continues until 10x10=100 is displayed.



– Times Table Without Repetition.

– Prime Numbers

See Day 4 Problem Set For Details



Lists



Lists

• So far, all variables and expressions we’ve seen only represent a single value.

• Be it a single integer, a single float, or a single string.

• Lists allow us to have a variable which contains several values rather than just one.
• We create a list in python using the square brackets and listing out the values in those 

brackets, separating them by commas.
• We can then do a lot of computations with these lists.



Example 1
Source Code

Output

Explanation
• Here we create 3 lists. The first one is called 

numbers and contains 3 numbers.
• We then print out the list and as seen in the 

output, the entire list is printed out.
• The second list is called messages and contains 

two strings.
• The third list is called scores and contains 3 

floats.



Example 2
Source Code

Output

Explanation
• This example shows that a list can contain 

just a single element, or even no elements at 
all (called an empty list).
• You can also put different type of values in 

the same list as seen for list3. This is usually 
not recommended.
• You can also put variables and expressions as 

in the list as seen for list4.
• You can also put lists inside of lists (not 

shown in this example).



Example 3
Source Code

Output

Explanation
• This example shows that we can concatenate 

lists together using the plus sign.
• It also shows that you can repeat a smaller 

list multiple times into a larger list using the 
asterisk.
• It also shows that you can get the length of 

the list (number of items) using the len
function.



Example 4
Source Code

Output

Explanation
• This example shows that lists can be 

indexed and sliced just like strings.



Example 5
Source Code

Output

Explanation
• We can also add elements to the list and 

remove elements from the list.
• The .pop method gives the last element of 

the list and removes it.
• So in line 2, the -4 is removed from the list 

and is stored into the variable x.
• The .append method adds an element to the 

end of the list.
• There are ways to add and remove elements 

in other parts of the list other than the end.



Example 6
Source Code

Output

Explanation
• This code shows how we can loop through all 

the elements of a list.
• We have a variable for the index, usually this 

variable is called “i”.
• While this index is less than the list’s length, 

we do something to the value at that index. 
In this case we just print it out.
• We then increase the index by 1 to go to the 

next element.



– Reverse Repeat Challenge

– Delete All Challenge

See Day 4 Problem Set For Details



For Each Loops



For-Each Loops

• For-each loops are used as shortcuts to going through each element in a list.

• They remove the need of constantly using while loops and indices.

• A for-each loop works by specifying some code that you want to run for each element in 
the list.



Example 1
Source Code

Output

Explanation
• The for each loop in Python has the following 

syntax: the word “for”, an element variable, the 
word “in”, and a list.
• Inside the for each loop, we place code that we 

want to run on each element.
• In this example, num is the element variable. 

Inside the loop we print out num, therefore 
each element of the list will get printed.



– Sum Challenge

– Count Challenge

See Day 4 Problem Set For Details



Range Function



Range Function
• The range function is used in python to create a list of numbers over a certain 

range.
• For example, range(7) will produce a list of numbers from 0 to 6. Notice that 7 

itself is not included in the list, as the range function stops at the number before 
the argument. Notice that the list it creates starts at 0 by default.
• If you do not want to start at 0, you can specify what number to start at. For 

example, range(3, 8) will produce a list of numbers from 3 to 7.
• You can also specify a step size: range(6, 20, 3) will create the following list of 

numbers: 6, 9, 12, 15, 18.
• Technically, the range function does not create a real list, it creates something 

called an iterator, which behaves like a list when it is used in a for each loop.



Example 1
Source Code

Explanation
• This code prints out all the even 

numbers from 6 to 18.
• Do you see why? Do you see why only 

the even numbers are printed? Do you 
see why the number 20 is not printed?
• The use of range(6, 20, 2) creates a list 

of numbers starting at 6, stopping 
before 20, and increasing by 2. 
Therefore, the list [6, 8, 10, 12, 14, 16, 
18] is produced.
• The for loop prints out each of them.



– Authentication Challenge

See Day 4 Problem Set For Details


